
March 2002

NASA/TM—2002–211397

On Abstractions and Simplifications in the
Design of Human-Automation Interfaces
Michael Heymann and Asaf Degani
Ames Research Center, Moffett Field, California

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at
(301) 621-0390

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace

Information
7121 Standard Drive
Hanover, MD 21076-1320

March 2002

NASA/TM—2002–211397

On Abstractions and Simplifications in the
Design of Human-Automation Interfaces
Michael Heymann
Department of Computer Science
Technion, Israel Institute of Technology

Asaf Degani
Ames Research Center, Moffett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

Acknowledgments

This work was conducted as part of NASA's base research and technology effort, human-automation theory sub-
element (RTOP #548-40-12). The first author was supported by Grant NCC 2-798 from the NASA Ames Research

Center to the San Jose State University. Michael Shafto and George Meyer provided helpful insights into this
research topic. Ronen Erez wrote the model reduction software. The authors also thank Todd Callantine, Tracy

Golden, Nolie Johnson, Kevin Jordan, and Rowena Morrison for their help and continual support.

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161
301-621-0390 703-605-6000

Summary
This report addresses the design of human-
automation interaction from a formal perspective
that focuses on the information content of the
interface, rather than the design of the graphical
user interface. It also addresses the issue of the
information provided to the user (e.g., user-
manuals, training material, and all other
resources). In this report, we propose a formal
procedure for generating interfaces and user-
manuals. The procedure is guided by two criteria:
First, the interface must be correct, that is, with
the given interface the user will be able to
perform the specified tasks correctly. Second, the
interface should be succinct. The report discusses
the underlying concepts and the formal methods
for this approach. Two examples are used to
illustrate the procedure. The algorithm for
constructing interfaces can be automated, and a
preliminary software system for its
implementation has been developed.

Introduction
Human interaction with automation is so

widespread that almost every aspect of our lives
involves computer systems, information systems,
machines, and devices. These machines are
complex and are composed of many states,
events, parameters and protocols. Yet, the only
face the user sees is the interface: always a
(highly) reduced description of the underlying
behavior of the machine. This is no coincidence,
because otherwise the user would be subjected to
enormous unnecessary complexity. Consider, for
example, consumer electronics where making the
user-interfaces and associated user-manuals as
efficient, simple, and succinct as possible is
becoming a marketing imperative, and no longer
is just an engineering and human factors ideal. As
consumer devices get increasingly complex and
multifunctional, there is a reciprocal drive to
render them simpler and easier to use (and
thereby more marketable).

In the majority of today’s automated systems, the
human is the supervisor. Users interact with
systems or tools to achieve certain operational
tasks (Parsuramann et al., 2000). These tasks, or
task specifications, may involve the execution of
specific sequences of actions (e.g., a procedure
for setting up a medical radiation machine),

monitoring a machine’s mode changes (e.g., an
automatic landing of an aircraft), or preventing a
machine from reaching specified illegal states
(e.g., tripping a power grid). To achieve these
task specifications, the user is provided with
information about the behavior of the machine. In
most cases, this information is provided by means
of an interface and associated user-manuals and
other training material.

Naturally, for the user to be able to interact with
the machine correctly and reliably so as to
achieve the task specification, the information
provided to the user must first and foremost be
correct. For example, if the pilot of an airliner
has insufficient information to resolve a mode
transition and to decide whether, after entering a
command to the autopilot, the aircraft will enter
“climb” mode or “level-flight” mode, then one
can say that the information provided to the pilot
is inadequate. One sure way to guarantee
sufficient information for correct interaction is to
provide the user with the full detail of the
machine behavior. This way the user can, in
principle, always track the status of the machine
correctly and reliably. But this amount of detail
has an obvious downside too; the size of
interfaces and weight of user manuals will be
huge, and the burden on the user
incomprehensible and unmanageable.

In practice, the interface and related user manuals
are always a reduced, or abstracted, description of
the machine’s behavior. No interface provides a
complete description of the underlying behavior
of the machine. Therefore, a major concern of
designers of automated systems is to make sure
that these abstracted interfaces and manuals are
indeed adequate and correct. Currently, this
evaluation is performed in an ad hoc fashion. It
usually involves costly simulations and extensive
testing, and in industries such as aerospace and
medical equipment, it also involves complicated
certification procedures (see for example Federal
Aviation Regulation 25.1329 and associated
Advisory Circular). Yet, despite the best efforts
by design teams and certification officials,
numerous incidents and accidents involving
incorrect interfaces have been reported in aviation
(Abbott, Slotte, and Stimson, 1996), maritime
(National Transportation Safety Board, 1997),
medical (Leveson, 1995 see Appendix A -- the
Therac-25 accidents), and automotive systems

2

(Andre and Degani, 1997). Even in simpler
consumer devices, flaws in the user interface
design are frequently encountered.

Developing a correct interface is only one
requirement. In addition, we all strive for
interfaces and user-manuals that are simple and
easy to use. One basic aspect of this requirement
is to develop interfaces and user-manuals that are
succinct. That is, the number of states and events
that the user needs to understand and track in
order to operate the system correctly should be as
small as possible. Currently, the design decisions
as to what information must be provided to the
user, both in the interface and in user-manuals,
are made intuitively. Systematic methodologies
do not exist for these decisions.

One of the outcomes of having incorrect and
extremely complex interfaces is a common
problem called “automation surprises,” where
operators (e.g., pilots, technicians, users) have
difficulty understanding the current status of an
automatic system as well as the consequences of
their interaction with it (Woods, Sarter, and
Billings, 1997).

In an earlier NASA report (Degani et al., 2000)
and a recent paper (Degani and Heymann, 2002),
we discussed a methodology for evaluating
interfaces and user manuals. Given a description
of the machine, specifications of the user’s task,
interface, and all relevant information the user has
about the machine, the procedure evaluates
whether the interface and user manual
information are correct for the task. That is, can
the user achieve all the specified tasks correctly
and reliably, given all the information provided?
The proposed procedure can be automated and
applied to the verification of large and complex
human-machine systems.

In the present report we take an additional step
and discuss a formal methodology for automatic
generation of interfaces and user manuals. The
requirement, of course, is that the interfaces and
user manuals be both correct and succinct. The
design problem can be formulated as follows: The
machine and the user’s operational requirements
(task specifications) are given. Now the problem
is to generate an interface and associated user
information that enables the user to interact with
the machine correctly. It is further required that

the interface and all user information be as simple
and as succinct as possible. Naturally, additional
considerations must be taken into account to
ensure efficient human-machine interaction.
These include graphical user interface design,
cognitive limitations, human physical abilities,
and the like. But underlying all is the basic
correctness issue on which we focus our attention
here.

The report is organized as follows: We begin by
discussing the four components of human-
machine interaction that are part of our theory and
methodology: the machine, the task specification,
the interface, and user model. We then use these
four elements to verify the correctness of a
proposed interface for a given machine. Next, we
turn to the main topic of this report, a formal
methodology for constructing interfaces and
related user information (e.g., user-manuals).
Here we describe a procedure for abstracting a
machine model to the most succinct description
that enables correct user-machine interaction. We
illustrate this procedure with an example of a
transmission system in a car and then show other
characteristics of abstraction using an example of
a somewhat more complex machine. Finally, we
conclude with a brief summary and discuss some
of the implications of this work for designers of
automated systems.

Formal Aspects of Human-
Automation Interaction
Many aspects of the human-machine interaction,
such as the design of interfaces in terms of their
graphical appearance (which is still highly
empirical and intuitive), are not amenable to
formal analysis and design. Yet aspects of
interaction that concern the information content
provided to the user about behavior of a system
can be formally analyzed, and thus can be
systematically verified and designed. Here the
emphasis is on questions regarding “what”
information must be provided to the user and
“when,” rather than on “how” this information is
to be presented.

In this work we focus primarily on the
information content provided to the user about the
behavior of a system. This aspect of user
interaction with machines can be described and
analyzed formally by considering the following

3

four elements: (1) the machine-model, (2) the
operational tasks, (3) the machine’s interface
with the user, and (4) the user’s model of the
machine, i.e., the information provided to the user
about the machine behavior (e.g., in the user
manual). Let us briefly review these elements.

Machine
As stated earlier, we consider machines that
interact with their environment and specifically
with their human users. We focus our attention
on the behavior of machine states, transitions, and
events. The machines are modeled as state
transition systems (in particular finite state
machines). A state represents a mode, or
configuration, of the machine. Transitions
represent discrete-state (mode) changes that occur
in response to events that trigger them. Some of
the transitions occur only if the user triggers
them, while other transitions occur automatically
and are triggered by the machine’s internal
dynamics, or its external environment.

To illustrate a typical machine model, let us
consider the machine of Figure 1, which describes
a simplified multi-mode three-speed transmission
system proposed for a certain vehicle. We use the
convention that user-triggered transitions are
described by solid arrows, while automatic
transitions are depicted by dashed arrows. The
transitions are labeled by symbols to indicate the
(triggering) circumstances under which the
machine moves from state to state.

The transmission has eight states, or modes.
These modes are grouped into three super-modes
that represent manually switchable gears (or
speeds): low, medium and high. The states within
each speed represent internal torque-level modes.
Thus there are torque modes ,1L ,2L ,3L in the
low speed super mode; there are torque modes

,1M ,2M in the medium speed super mode; and

modes ,1H ,2H ,3H in the high speed super
mode. The transmission shifts automatically
between torque modes (based on torque, throttle,
and engine and road speeds). The automatic up-
shifts (to higher torque modes) are denoted by the
event symbol δ and the automatic down-shifts by
the symbol γ . The (user operated) manual speed
changes, achieved by pushing a lever up or down,
are denoted in Figure 1 by the event symbols β
and ρ , respectively. Pushing the lever up shifts
to a higher speed and pushing down shifts to a
lower speed. The transmission is initialized in the
low torque mode 1L of the low speed (as
indicated in Figure 1 by the free incoming arrow).

Task Specifications
The second element is the specification of the
operational tasks the user is required to perform
while using the machine. For example, a common
task specification in an automated control system
is that the user be able to determine

Figure 1. Transmission system.

4

unambiguously the current and the subsequent
mode of the machine.

In terms of a formal description, the task
specification consists of a partition of the
machine’s state-set into disjoint clusters that we
shall call specification classes (or modes) that the
user is required to track unambiguously. In other
words, does the user know whether the system is
currently in, or is about to enter into, the super-
mode High, Medium, or Low? We note that the
user is not required to track every internal state
change of the machine: for example, between the
modes 1L , 2L and 3L inside mode Low.

Interface
The third element is the user interface. In
practice, the interface consists of a control unit
through which the user enters commands (e.g.,
mode selections, parameter changes) into the
machine, as well as a display through which the
machine presents information to the user.
Generally, the interface provides the user a
simplified view of the machine. Not all the events
of the machine are annunciated to the user, and
the interface displays only partial information
about the actual behavior of the machine.

Formally, the interface consists of a listing and
description of the events accessible to the user.
These include, of course, all the user-triggered
events (inputs to the machine), but generally only
a subset of the events that are associated with
automatic transitions. This is because some of the
latter are not monitored at all, and others are
monitored only in groups. The interface
annunciation tells the user only that one of the
events in the group took place, without specifying
which.

It is noteworthy that events per se cannot be
displayed in the interface. What can be displayed
is some consequence of their occurrence.
Therefore, events are usually represented by
display modes that become active as a result of
the event occurrence. How these modes are
presented to the user graphically (e.g., icon shape,
color, etc.) is beyond the scope of this report.

To illustrate, let’s return to the multi-mode
transmission model of Figure 1. The system in
Figure 2 gives one possible user interface for this
model. Here the monitored events are only the
ones triggered by the user. In the Figure 2 we
have also provided a description of the three
display modes, as well as how the user would
observe the machine’s behavior when all
automatic transitions are internalized and
unobserved. Note that the torque modes are
completely suppressed from view.

An alternate interface for the transmission is
provided in Figure 3. Here the monitored events
consist of the user-triggered events as well as the
automatic transitions. Again, we provide a
possible description of how the user might
observe the machine behavior. Note that wherever
the automatic transitions do not trigger a state
change in the user model, they are shown by
(gray) self-loops to indicate the fact that the user-
model “is aware” of the possibility that these
events might take place without its actual
participation.

Figure 2. Proposed interface and user model.

5

Figure 3. Alternate interface and user model.

User model
As mentioned earlier, the interface provides the
user with a simplified view of the machine, in that
it displays only partially the machine’s internal
behavior. The description of the machine’s
operation that is provided to the user is generally
also an abstracted simplification of the actual
machine behavior. This description is usually
provided in terms of a user manual, training
material, formal instruction, or any other means of
teaching the user; however, it is presented here as
a formal model that we refer to as the user model
of the machine. By its very nature, the user-
model is based on the interface through which the
user interacts with the machine, and thus relates
to the modes and events that are displayed there.
Therefore, for analysis purposes the interface
events and modes are all explicitly referred to in
the user-model, and in this respect can be thought
of as “embedded” in the user-model.
Let us return to the user interface displayed in
Figure 2. This Figure depicts a possible user-
model associated with the interface that monitors
only the user-triggered events for the transmission
system. This particular user-model can be
obtained from the machine model of Figure 1 by
suppressing (internalizing) the events that are not
monitored, and grouping the states as suggested
by the specification. It can be seen that the
manual shifts from MEDIUM up to HIGH or down
to LOW, as well as the down-shift from HIGH to
MEDIUM, are always completely predictable.
However, the up-shift from the LOW gear depends

on the current torque mode. Note that the up-
shifts from L1 and L2 switch the transmission to
MEDIUM speed, while the up-shift from L3
switches the transmission to the HIGH speed.
Therefore, from the suggested interface of Figure
2, it cannot be predicted whether the up-shift will
lead the transmission from LOW to MEDIUM, or to
HIGH gear.

An alternate user-model for the transmission
model is presented in Figure 3. This user-model
describes an interface that also monitors the
occurrences of two specific automatic transitions,
in addition to all user-actuated events. This user-
model, in particular, is aimed at enabling the
operator to determine whether the transmission is
in a display-mode LOW-1 (where an up-shift is
supposed to lead to MEDIUM speed), or in the
display-mode LOW-2 (where an up-shift leads to
HIGH).

Correctness of interaction
Among the four elements that play a role in the
human automation interaction, the machine model
and the task specification must be regarded for
our purpose as given and beyond dispute, because
they are not subject to our scrutiny. In contrast,
the interface and the user model, which are the
subject of investigation in the present report, must
be examined for correctness. Specifically, we
wish to know whether a given interface and user
model enable the user to operate the machine
correctly so as to satisfy the specification.

This verification problem was the focus of a
recent paper (Degani and Heymann, 2002) in
which a methodology was described for
verification of user-model and interface
correctness for a given machine-model and
specification. It was shown that the user model
and interface are correct if, in a composite model
obtained through a suitably defined synchronous
composition of the machine model and the user
model (see Figure 4), there exist no error states
and no blocking states. An error state represents a
divergence between the machine and user models
– the user model does not indicate the correct
specification-class the machine is in and hence
leads the user to a wrong interpretation of the
machine’s behavior. A blocking state is one in
which the machine can trigger a observed

6

transition that the user-model is unaware of and

does not recognize.

Next, we review the methodology of Degani and
Heymann (2002), about the verification problem.
This will also introduce us to terminology that
will be required for the discussion of the main
issues of the present report.

As we have already stated, the interface and user-
model are intended to provide an abstracted and
reduced description of the machine. This
abstracted description does not enable the user to
determine with certainty each state the machine is
in, since it is required only that the user be able to
determine which specification-class (mode) the
machine is in and which it is about to enter. Let

MΣ denote the set of events, or transition labels,
that take place in the actual machine model. The
events that ultimately appear in the associated
user-model and are displayed in the interface
constitute a reduced subset of the set MΣ of
machine events. This reduction, or abstraction, is
achieved through a projection operation Π : MΣ
→ USRΣ as explained next, where USRΣ is the

event set that is displayed in the interface and
appears in the user-model.

The event set MΣ consists of three disjoint

subsets: (1) o
MΣ - the set of observed-events that

includes all machine events that are actually
presented in the interface and appear also in the

user-model; (2) m
MΣ - the set of masked events

(that are not displayed individually, but rather are
grouped into sets of two or more events each,

with each set having a single event-label in the

user-model; and (3) u
MΣ - the set of unobserved-

events that are neither displayed nor appear in the
user-model.

In view of the above, the event set USRΣ consists

of the union of the event sets)(o
MΣΠ (which is

identical to o
MΣ), the event set)(m

MΣΠ which
denotes the set of events obtained after masking

the events in m
MΣ , and the “empty event” ε (=

)(u
MΣΠ) that represents the set of unobserved

events.

In actual operation, the machine is driven by
events from MΣ . The user tracks the progress of
the machine via the interface (display), where he

or she observes events in USRΣ , with the aid of

the associated user-model. Thus, the user-model
and the machine evolve concurrently. But they are
only partially synchronized, in that the user-model
tracks the actual state evolution of the machine
with some uncertainty. This is because (1) not all
machine events are observed and some machine-
events are masked, and (2) the user-model is only
an abstraction of the actual machine’s behavior.

Suppose that the machine is at state q at which a

transition labeled α is defined, leading to a state

q’ (we denote this by 'qq → α). Assume that
when the machine is at state q, the user-model is
at a corresponding state p. Event α can be either
observed, masked, or unobserved.

Figure 4. Masked synchronous composition.

7

If α is an observed event and hence αα =Π)(,
it is required for adequacy of the user-model that
a corresponding transition be also defined at state
p, leading to p’. That is, there must exist a

transition 'pp → α . In the concurrent
operation of the machine and the associated user-
model, there will appear a transition labeled α
from the state pair (q,p) to the state pair (q’,p’).
That is, there will be a “composite” transition

)','(),(pqpq → α .

If α is a masked event, there will be a

corresponding transition ')(pp → Π α in the

user-model, where)(αΠ is the (masked) image

of α in USRΣ . The composite transition will

appear as).','(),()(pqpq → Π α The fact that
the event labels are taken from the user-model is
because the composite transition is viewed from
the point of view of the user.

Finally, if α is unobserved and εα =Π)(, the
composite transition will appear as

),'(),(pqpq → ε (since α is silent and has no
corresponding transition in the user model).

For the user-model to be correct for the task
specification, it is necessary that the user-model

be able to track the machine-model’s specification
classes unambiguously. More explicitly, it is
required that when the user-model enters a state
p in response to an observed event-string (or

event sequence) t , all possible states q that the
machine-model could have entered in response to
machine event strings s for which ts =Π)(,
would belong to the same specification class.

Before proceeding with the discussion, let us use
our methodology to verify whether the user model
of Figure 3 is correct. Recall that this user-model
is aimed at enabling the operator to determine
unambiguously which speed the transmission is in
or is about to enter. The composite model of the
machine of Figure 1 and the user model of Figure
3 is shown in Figure 5. Here we can readily see
the error state (M1,High) which is entered upon
executing the event sequence δβ (δ followed by

β). It is evident that the user model of Figure 3
is incorrect.

It is of course possible to try other interfaces and
user-models and then employ the verification
procedure to determine their correctness.
However, such an approach is not likely to be
very fruitful: It may take considerable effort to
develop and verify one design after the other, with
no guarantee of success. Furthermore, even when

Figure 5. Composite model of the alternative user model.

8

a correct interface is found, there is no assurance
that it is the simplest. The development of a
systematic approach for constructing interfaces
that are both correct and succinct is the subject of
the next section.

Machine Model Reduction
In the previous section we have seen which
conditions the user-model and interface must
satisfy in order to enable the user to perform
correctly a specified task on a given machine. We
have also reviewed a procedure for verifying that
these conditions indeed hold true. However, the
question remains open as to how a correct
interface and user model can be designed
systematically for a given task.

As mentioned earlier, one possible choice of user
model is to take the full machine model as user
model and the complete machine event set as the
set of monitored events. If the machine model is
deterministic (as we assume throughout this
report), this will ensure that there will never be
any problem in predicting the next state of the
machine. But the operator would be required to
track every state and every event in the machine –
a formidable and impractical job. In the simple
example of Figure 1, the machine has 8 states, 18
transitions and 4 distinct transition labels. But this
is a tiny number when compared to “industrial
size” situations.

In this section we shall turn to the main issue of
the present and describe a procedure for the
generation of all optimal user models and
interfaces for a given machine model and task
specification. In particular, we shall consider the
problem of constructing, for a given machine and
task specification, the set of all best possible user-
models and event abstractions that satisfy the
specification. Here, by best user models and
interfaces we mean the ones that cannot be further
reduced. Since, as we shall see, these user models
(and associated event abstractions) are generally
not unique, we cannot speak of user-model
“synthesis,” but rather, of machine model
reduction. We shall show how all “smallest” user
models and associated interfaces can be derived.

Compatible state sets and covers
We assume that the machine-model is given as a
state machine and that the task specification is

given as a partition of the state-set into disjoint
classes of states that we refer to as specification
classes (Degani and Heymann, 2002). Thus, each
state of the machine model belongs to a unique
specification class. (In Figure 1 which depicts the
multi-mode three speed transmission, the
specification classes consist of the three speeds;
Low, Medium and High. Each state, or mode,
belongs to exactly one speed.)

Let us consider a machine-model given as a state-
machine, and let the task specification consist of a
partition of the machine-model’s state set Q into

disjoint specification classes lQQ ,...,1 (as

described, for example, in Figure 1 where 3=l).

The user model must enable the user to operate
the system correctly with respect to the
specification classes. That is, it must enable the
user to track the specification classes but not
necessarily individual states. Thus, the user does
not need to be able to distinguish (by means of the
user model and interface) between two states p
and q of the same specification class, if for the
purpose of tracking the specification classes
unambiguously it is sufficient for the user to
know that the machine visited either p or q .
More explicitly, the user does not need to be able
to distinguish between p and q if the
specification class visited following any user-
machine interaction starting in state p , is the
same as the specification class visited following
the same user-machine interaction starting at state
q . This leads to the following definition: Two
states, p and q , are specification equivalent (or
compatible), if given that the machine is presently
in either state p or q (of the same specification
class), the specification classes to be visited under
future inputs will be the same. Stated more
formally, we have

Definition: Two states p and q are
specification compatible if and only if
the following two conditions both
hold:
1. The states p and q belong to
the same specification class,

9

2. If 'p and 'q are states such that
there exists an event string

ns σσ ...1= for which
'pp s→ and 'qq s→ are

both defined, then 'p and 'q
belong to the same
specification class.

It is clear that if the only concern is to track the
specification classes, two specification
compatible states need not be distinguished in the
user model. We may also conclude immediately
that any set of states is specification compatible if
all the pairs of states within that set are
specification compatible.

Thus, if an efficient procedure is found for
computation of all specification compatible pairs,
the set of all compatible state sets will easily
computed. Indeed, the compatible triples will be
obtained as the state triples, all of whose pairs are
compatible; compatible quadruples as the
quadruples all of whose triples are compatible,
and so on.

Next, we have the following:

Definition: A set C of compatible sets of

states is called a cover of the state set of

the machine-model, if every state of the

machine-model is contained in one or

more elements of C.

Since a set that consists of a single state is
(trivially) compatible, it follows that every state is
included in at least one compatible set, so that the
set of all compatibles is always a cover.

Definition: A compatible set of states is

called a maximal compatible set, if it is

not a proper subset of another compatible

set; that is, if it is not contained in a

bigger compatible set of states.

Since sets that consist of a single state are
compatible, it is clear that every state is contained
in at least one maximal compatible set. It follows
that the set of maximal compatibles is a cover.

Definition: A cover C of compatibles
is called a minimal cover, if no proper
subset of C is a cover.

Of particular interest to us will be the set of all
minimal covers formed from the set of maximal
compatibles. That is, we shall be interested in
minimal covers whose component elements are
maximal compatible sets. In general, the number
of such minimal covers can be greater than one.

We shall see below that minimal covers by
maximal compatibles constitute the foundation of

Figure 6. Table of all pairs.

10

the model reduction and interface generation
procedure. However, we shall first show how the
set of compatibles is computed.

Generation of compatible pairs
As stated above, the computation of compatible
sets hinges on the construction of the set of all
compatible pairs. An efficient iterative algorithm
for construction of compatible state pairs is based
on the use of merger tables (see e.g., Paull and
Ungar 1959, and Kohavi 1978, where related
model reduction problems are discussed).

A merger table is a table of cells representing
distinct state pairs. An initial table for the eight
states of our transmission example is shown in
Figure 6. Each cell of the table corresponds to a
pair of distinct states, and each pair of distinct
states appears in the table exactly once.

Next, we have the following observations that can
be easily derived from the definition of
compatible pairs:

A state pair),(qp of the same specification
class is compatible if and only if for every

event symbol σ such that 'pp → σ and

'qq → σ are both defined, it is true that

either '' qp = , or the pair)','(qp is
compatible.

We shall use the above characterization of
compatible sets to obtain a complementary
characterization of all pairs that are not
compatible (or incompatible). It will then be
convenient for us to compute recursively the set
of all incompatible pairs. The set of compatible
pairs will then consist of all state pairs that are not
found to be incompatible. Based on the above
characterization of compatible pairs, the
characterization of incompatible pairs is as
follows:

A state pair),(qp is incompatible if and
only if either p and q belong to distinct
specification classes, or there exists an event

symbol σ for which 'pp → σ and

'qq → σ are both defined, and the state

pair)','(qp is incompatible.

Using the above observations regarding
compatible and incompatible pairs, the
determination as to whether a state pair is
compatible or incompatible is computed
iteratively as follows.

1. For each state pair),(qp that can be
determined as incompatible in the first
step based on the above characterization
(i.e., if p and q belong to distinct

Figure 7. Resolution table (initial).

11

specification classes), we mark the
corresponding cell F (for false). For all
other state pairs, we write in their cells
their associated transition pairs that
consist of all distinct state pairs)','(qp
for which there exists an event symbol

σ , such that the transitions 'pp → σ

and 'qq → σ are both defined.

For illustration, the initial resolution table for the
transmission model of Figure 1 is presented in
Figure 7. Notice that each transition pair in the
table has been subscripted with the associated
event label. This subscription is not essential to
the algorithm and is for the reader’s convenience
only. Notice further that the cell (H1,H3) is empty
because it is neither incompatible nor has
associated transition pairs.

Next, the table is resolved iteratively.

2. At each step of the iteration every state
pair that has not yet been determined as F
is updated as follows: If the cell of a state
pair),(qp includes a transition pair

)','(qp whose cell has already been
determined as F (incompatible), then the
cell of),(qp is also denoted F.

Otherwise, the cell of),(qp is modified

as follows: Each transition pair)','(qp
in the cell of),(qp is replaced by all the
transition pairs that appear in the cell of

)','(qp .

3. If in a given iteration step no new
incompatible state pairs are found (i.e., no
new F designations are added to the
table), then all the state pairs that are not
designated as F, are given the designation
T (for true). This completes the table
resolution procedure and the
determination of all compatible pairs.

To illustrate the iteration steps of the procedure,
let us return to our transmission example. The
table of Figure 8 is obtained from that of Figure 7
as follows: First we replace the transition pairs in
the cell (L1,L2) by those in the cell (L2,L3). The
cells (L1,L3) and (L2,L3) are denoted with F
because their cells include incompatible pairs.
The remaining undecided state pairs (those that
have not yet been given the value F) are modified
according to the algorithmic procedure. For
example, in the cell (M1,M2) we list the transition
pairs from the table of Figure 7 of the cell
(H1,H2) that consists of (H2,H3).

Figure 8. Resolution table (after first iteration).

12

In the next resolution step the table of Figure 9 is
obtained. Here the cell (L1,L2) is marked F upon
substituting the value F of the cell (M1,H1,)
which is incompatible. The remaining undecided
cells are modified as specified by the algorithm.
In fact, notice that no further change needs to be
made to the table.

In the next step, no further incompatible pairs are
created and the table remains identical to that of
Figure 9. At this point, all the remaining
undecided cells are marked T as shown in the
table of Figure 10, concluding the table
resolution.

Thus, as seen in Figure 10, for the example of
Figure 1, the set of compatible pairs consists of
(M1,M2), (H1,H2), (H1,H3), and (H2,H3).
Notice that the states L1, L2 and L3 do not appear
in any compatible pairs and therefore the
singleton sets (L1), (L2) and (L3) are clearly
maximal compatibles.

Generation of the set of maximal
compatibles
The procedure for generation of maximal
compatibles consists of first systematically
creating all compatible sets. We begin by
computing all compatible triples, then compatible
quadruples, then quintuples, and so on. A

compatible triple is a triple all three of whose
pairs are compatible; a compatible quadruple is a
quadruple all of whose pairs are compatible,
which is equivalent to a quadruple whose four
triples are all compatible, and so on. Once all
compatibles are listed, the maximal ones can
easily be computed by deleting from the list all
compatibles that are contained within larger ones.

For the transmission example, the maximal
compatibles are easily found to be the sets (L1),
(L2), (L3), (M1,M2) and (H1,H2,H3). It is also not
difficult to see that, in this case, they partition the
state set into disjoint subsets and hence form the
(unique) minimal cover by maximal compatibles.

Generation of reduced models
The generation of a reduced model that can serve
as a correct user model for the given machine and
specification is based on an abstraction of the
machine-model. This reduced model is obtained
by clustering the states into sets that consist of a
minimal cover by maximal compatibles.

To this end, let us assume that a minimum cover
consists of a given set of maximal compatibles

lCC ,...,1 , where the set iC , li ,...,1= , consists of

states },...,{
1 inii qq of the machine model. The

maximal compatibles lCC ,...,1 form the state set

of the reduced model. Here it is noteworthy that a

Figure 9. Resolution table (after second iteration).

13

minimal cover by maximal compatibles need not
be a partition of the state set into disjoint subsets.
Specifically, while each state of the machine
model must be contained within some maximal
compatible set, it may well be the case that a state
is contained in more than one maximal
compatible of the minimal cover. That is, these
sets may have overlaps.

Next, we turn to computing the transitions in the
reduced model. An event symbol σ is said to be
active at iC , if there exists an outgoing transition

in the machine model labeled by σ , at some state

iCq ∈ . That is, there exists a state 'q in the

machine model, such that 'qq → σ is defined.

We denote by)(σiC the set of all states iCq ∈
for which an outgoing transition labeled by σ
exists.

Next, we define)(σiS to be the set of all states

'q of the machine model, such that 'qq → σ

for some)(σiCq ∈ . Thus, the set)(σiS is the

set of all states of the machine model that can be
reached from states in iC through the event σ .

It readily follows from the definition of
compatible sets that there exists one or more
element of lCC ,...,1 which contain)(σiS . In the

reduced model we then create a transition labeled
by σ going from the state iC to the state jC ,

where jC is the maximal compatible that contains

)(σiS . If more than one such set jC exists, we

can choose any one of these (and to avoid non-
determinism in the reduced model we choose
exactly one).

To summarize, the reduced model associated with
the minimal cover lCC ,...,1 is obtained as

follows. The state set of the reduced model
consists of elements lpp ,...,1 (think of ip as

associated with iC). There is a transition labeled

σ from ip to jp if jC is the (chosen) set that

contains)(σjS . The reduced model is initialized

at state kp if the machine model is initialized at a

state in kC (where, as before, there may be more

than one possible selection if the initialization
state is contained in more that one of the iC).

The reduced model obtained for the transmission
example is shown in Figure 11. The correctness
of this reduced model as a user model for the
specification is verified in Figure 12 in which the
composite model with the machine model of the
transmission is displayed.

Figure 10. Resolution table (completed).

14

Event Abstraction
The final step of the model reduction procedure
consists of the abstraction of the reduced model’s
event set (when possible). Specifically, we ask
which events can be internalized (i.e., need not be
monitored) and which events can be clustered into
groups so that instead of being monitored
individually, they will be monitored collectively.
That is, the user will be informed that some
events in the group occurred, but will not be

informed which events of the group actually took
place.

To this end the following abstraction rules apply:

1. An event can be internalized if it occurs
in the reduced model only in self-loops.

2. A set of events can be grouped together,
if every state transition that can be
triggered by any event of the group can

Figure 12. Verification of the reduced model (no error states and no blocking are detected).

Figure 11. The reduced user model.

15

also be triggered by any other event of the
group.

In the transmission example of Figure 11
no event abstractions are possible. An
illustration of event abstractions is
provided in the example of the next
section.

a GENERIC machine example
In the above discussion on verification and
machine model reduction, we used an example of
a transmission system. In this final section, we
shall apply the reduction algorithm to a somewhat
more complex machine. The machine in Figure
13 has 9 states and 25 transitions. There are three
specification classes: the gray region that includes
states 7, 8, and 9; the wave-like region that
harbors state 4 and 6; and the rest of the states of
the machine (1, 2, 3, and 5). The task
specification is similar to our previous one: the
user has to track the machine along these three
regions (or modes). Specifically, the user must be
able to identify the current mode of the machine
and anticipate the next mode of the machine as a
consequence of his or her interactions.

We perform the reduction procedure along the
steps described in the previous section. First the
table is constructed, and then the iterations are
performed. The procedure terminates with only
one minimal cover of maximal compatibles that

consists of four state sets: (1,3,5) (2,3,5) (4,6)
(7,8) and (9). Notice however, that this example
illustrates a case in which the cover is not a
partition of the state set. Indeed, the state 3 is
included in two distinct maximal compatibles.

We then arbitrarily assign names to these sets,
and call them A, B, C, D, and E, respectively.
The reduced machine is obtained upon
computation of the abstracted transitions as
explained earlier, and is shown in Figure 14. It
can be seen in this figure that the event ρ occurs
only in the self-loop in state A and that the events
γ and δ are interchangeable. Thus, ρ can be

internalized and the events γ and δ can be
grouped. The result of this event abstraction is
presented in the final reduced (user) model of
Figure 15, which contains only 5 states and 16
transitions. The verification result of this model
is presented in Figure 16. No error states or
blocking are detected.

Conclusions
In this report we discussed several formal aspects
of the design of human-automation interaction.
Specifically, we focused attention on the
construction and verification of correctness of
user models and interfaces. Two objectives
guided us in our design and analysis: (1) that the
interfaces and user models be correct; and (2),
that they be as simple as possible. We have

Figure 13. A generic machine model.

16

described a systematic procedure for generating
such correct and succinct user-models and
interfaces.

The discussion and the examples illustrate that
even for machines that are seemingly simple, i.e.,
that have very few states and straightforward task
specifications, finding a correct interface and
user-model is not a trivial matter. Interfaces that
intuitively may appear to be correct are shown,
after applying formal verification, to be faulty. It
is therefore not surprising that we encounter so
many automation problems in commonly
encountered systems. Indeed, such problems can
be found in almost every computer-based system.

Thus, the main focus of the report is on a
systematic procedure for constructing correct and
succinct user-models and interfaces. The
proposed reduction procedure generates interfaces
that are not necessarily intuitive or easily
correlated with the underlying system (e.g., see
the reduced user model of Figure 15).
Nevertheless, these user models are formally
correct and efficient. They are also irreducible.
This is a marked departure from the usual ad hoc
way of constructing abstractions in interface
design. But this change in approach is necessary,
given the complexity of current systems, the
expected increase in complexity of future
systems, and the ever-increasing requirements for
correct and reliable operation.

As discussed in the section “compatible states sets
and covers,” the proposed procedure may lead to
more than one possible minimal (irreducible)
interface and user-model. That is, it may find
several minimal covers (of maximal compatibles).
These minimal covers are all correct and efficient
reductions of the same machine and task-
specification. Naturally, the decision as to which
one is selected constitutes a human-factors and/or
engineering design decision. It affords the
designer with several candidate interfaces and
allows designers the freedom to choose the most
appropriate one, given other design considerations
such as graphical user interface considerations,
users’ preferences, and ease of implementation.

While the discussion and examples have focused
on discrete-event systems and finite state machine
representations, the approach is amenable to other
type of representations. It remains, however, an
interesting topic of future research, to expand the
approach to systems that have continuous and
discrete events (hybrid systems) as well as timed
systems.

Figure 14. Reduced model.

17

Figure 15. Reduced model (with masking and internalization of event).

Figure 16. Composite model.

18

References
Abbott, K., Slotte, S. M., and Stimson, D. K.
(1996). The interface between flightcrews and
modern flight deck systems. Washington, DC:
Federal Aviation Administration.

Andre, A. & Degani, A. (1997) Do you know
what mode you're in? An analysis of mode
error in everyday things. In Mouloua, M. &
Koonce, J.M., (Eds.) Human-automation
interaction: Research & Practice, Mahwah,
NJ: Lawrence Erlbaum.

Degani, A. and Heymann, M., Meyer, G., and
Shafto, M. (2000). Some Formal Aspects of
Human-Automation Interaction, NASA
Technical Memorandum 209600, NASA
Ames Research Center, Moffett Field, CA.

Degani, A. and Heymann, M. (2002). Formal
Verification Of Human-Automation
Interaction. Human Factors.

Federal Aviation Regulation 25.1329.
Certification of Flight Guidance Systems.
Washington, DC: Code of Federal
Regulations.

Kohavi, Z. (1978). Switching and Finite
Automata Theory. New York: McGraw-Hill.

Leveson, N. (1995). Safeware: System Safety
and Computers. New York: Addison-Wesley.

National Transportation Safety Board. (1997).
Grounding of the Panamanian passenger ship
Royal Majesty on Rose and Crown shoal near
Nantucket, Massachusetts on June 10, 1995.
Washington, DC: National Technical
Information Services.

Parasuraman, R., Sheridan, T.B., and
Wickens, C.D. (2000). A model for the types
and levels of human interaction with
automation. IEEE Transaction on Systems,
Man, and Cybernetics – Part A: Systems and
Humans, 30(3), 286-297.

Paull, M.C. and Unger, S.H. (1959).
Minimizing the number of states in
incompletely specified sequential switching
functions. Institute of Radio Engineers
Transactions on Electronic Computers, 356-
367.

Woods, D., Sarter, N., and Billings, C. (1997).
Automation surprises. In G. Salvendy (Ed.),
Handbook of human factors and ergonomics
(pp. 1926-1943). New York: John Wiley.

20

Report Documentation Page
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

1. AGENCY USE ONLY (Leave

blank)

2. REPORT DATE

March 2002

3. REPORT TYPE AND DATES COVERED

Technical Memorandum
4. TITLE AND SUBTITLE

On Abstractions and Simplifications in the Design of Human-
Automation Interfaces

5. FUNDING NUMBERS

548-40-12

6. AUTHOR(S)

Michael Heymann and Asaf Degani

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Ames Research Center
Moffett Field, California 94035-1000

8. PERFORMING ORGANIATION

REPORT NUMBER

IH-024

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/TM—2002–211397

11. SUPPLEMENTARY NOTES

Point of Contact: Asaf Degani, M/S 262-4, Ames Research Center, Moffett Field, CA 94035
(650) 604-0013

12A. DISTRIBUTION/AVAILABILITY STATEMENT

Subject Category: 03-01, 63-02 Distribution: Public
Availability: NASA CASI (301) 621-0390

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report addresses the design of human-automation interaction from a formal perspective that
focuses on the information content of the interface, rather than the design of the graphical user
interface. It also addresses the issue of the information provided to the user (e.g., user-manuals,
training material, and all other resources). In this report, we propose a formal procedure for
generating interfaces and user-manuals. The procedure is guided by two criteria: First, the
interface must be correct, that is, with the given interface the user will be able to perform the
specified tasks correctly. Second, the interface should be succinct. The report discusses the
underlying concepts and the formal methods for this approach. Two examples are used to
illustrate the procedure. The algorithm for constructing interfaces can be automated, and a
preliminary software system for its implementation has been developed.

14. SUBJECT TERMS

Interface design, Formal methods, Human-automation interaction
15. NUMBER OF PAGES

20

16. PRICE CODE

17. SECURITY

CLASSIFICATION

OF REPORT

18. SECURITY

CLASSIFICATION

OF THIS PAGE

19. SECURITY

CLASSIFICATION

OF ABSTRACT

20. LIMITATION OF

ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z-39-18

298-102

